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Abstract

Background: To measure the impact of masticatory reduction on learning and memory, previous studies have
produced experimental masticatory reduction by modified diet or molar removal. Here we induced spatial learning
impairment in mice by reducing masticatory activity and then tested the effect of a combination of environmental
enrichment and masticatory rehabilitation in recovering spatial learning at adulthood and in later life. For 6 months
(6M) or 18 months (18M), we fed three groups of mice from postnatal day 21 respectively with a hard diet (HD) of
pellets; pellets followed by a powdered, soft diet (HD/SD, divided into equal periods); or pellets followed by
powder, followed by pellets again (HD/SD/HD, divided into equal periods). To mimic sedentary or active lifestyles,
half of the animals from each group were raised from weaning in standard cages (impoverished environment; IE)
and the other half in enriched cages (enriched environment; EE). To evaluate spatial learning, we used the Morris
water maze.

Results: IE6M-HD/SD mice showed lower learning rates compared with control (IE6M-HD) or masticatory
rehabilitated (IE6MHD/SD/HD) animals. Similarly, EE-HD/SD mice independent of age showed lower performance
than controls (EE-HD) or rehabilitated mice (EE-HD/SD/HD). However, combined rehabilitation and EE in aged mice
improved learning rate up to control levels. Learning rates did not correlate with swim speed.

Conclusions: Reduction in masticatory activity imposed on mice previously fed a hard diet (HD/SD) impaired
spatial learning in the Morris water maze. In adults, masticatory rehabilitation recovered spatial abilities in both
sedentary and active mice, and rehabilitation of masticatory activity combined with EE recovered these losses in
aged mice.
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Background
The proportion of the elderly population that experi-
ences dementia is rapidly increasing, and both human
and animal studies have indicated a relationship between
reduced masticatory function (e.g., from occlusal dishar-
mony) in elderly individuals and cognitive impairment
[1,2]. In addition, data from human and animal reports
reveal that an impoverished environment (IE) is associ-
ated with aggravation of aging-related cognitive decline;
for a recent review see [3]. Indeed, compared with geri-
atric persons with poor levels of physical and social
activities, exercise programs for institutionalized older
people improve cognitive function [4-6]. Consistent ex-
perimental data from aged mice and rats maintained in
IEs also point to spatial memory impairments in Morris
water maze tests [7,8]. Water maze tests require acquisi-
tion and retrieval of spatial information [9], and this
hippocampal-dependent task [10,11] can be impaired by
a variety of structural/functional changes including aging
[12], IE [3], and occlusal disharmony [2,13].
Human epidemiological studies [14-16] and experimen-

tal data from rodents [17-19] also show direct correlations
between aging, masticatory imbalances (e.g., occlusal
disharmony), and cognitive decline, but with no references
to environmental conditions. Experimental approaches
imposing masticatory deprivation, like tooth-loss [20],
long-term soft diet [21], or bite-rise occlusion, suggest a
behavioural displacement, but more research is needed
into the effects of rehabilitation. Here we examined out-
comes at the intersection of masticatory deprivation,
environmental conditions, and spatial memory impair-
ments in adult (6-month-old; 6M) and aged (18-month-
old; 18M) mice. To assess the effects of masticatory
rehabilitation on the Morris water maze task, we used
different sequences of hard diet (HD) and soft diet (SD)
on the aged and young mice and included an environ-
mental component with an IE or enriched environment
(EE). To mimic masticatory rehabilitation, we fed some
animals with HD followed by SD, with a return to HD,
and compared them to animals without rehabilitation
(HD/SD).

Results
Masticatory reduction, environmental changes, and water
maze tests at 6 and 18 months.

Learning rate
Figure 1 depicts the diet regime, age, and environmental
influences on learning rate of the best five performances of
each experimental group on the fourth training day. The
top panel (Figure 1A) indicates the significant between-
group differences in the learning rates, and the bottom
(Figure 1B) panel shows individual performances and
group means. Note that at 6M, impoverished conditions
associated with a reduction in masticatory activity (HD/
SD) were also associated with lower learning rate values
compared with control (HD) or masticatory rehabili-
tated (HD/SD/HD) mice. On the other hand, spatial
learning performance was impaired in aged IE mice re-
gardless of diet regime but less so in the rehabilitated
group. Similarly, EE-HD/SD animals independent of age
showed lower performance than EE controls (HD) or re-
habilitated mice (EE-HD/SD/HD). However, rehabilita-
tion + EE in aged mice improved learning rates up to EE
control levels. Indeed, on the fourth training day, learn-
ing rate was influenced by diet regime (F(2,48) = 21.2, p <
0.000001) and age (F(1,48) = 13.6, p < 0.000567) with
interactions between environment and age (F(1,48) =
16.7, p < 0.00164). Pairwise comparisons (Tukey Hon-
estly Significant Difference) showed significant differ-
ences between mean values of IE6M-HD (90.19 ± 2.74,
mean ± S.E.) and IE6M-HD/SD (51.60 ± 5.40) (t(8) =
6.38, p < 0.0002); IE6M-HD and IE6M-HD/SD/HD
(78.49 ± 4.43) (t(8) = 2.25, p < 0.05); IE6M-HD and
IE18M-HD (51.02 ± 7.26) (t(8) = 5.05, p < 0.001); IE6M-
HD and EE6M-HD (76.14 ± 2.48) (t(8) = 3.80, p <
0.005); IE6M-HD/SD and IE6M-HD/SD/HD (t(8) =
3.85, p < 0.005); IE6M-HD/SD/HD and IE18M-HD/SD/
HD (44.25 ± 9.89) (t(8) = 3.16, p < 0.013); and IE18M-
HD/SD/HD and EE18M-HD/SD/HD (79.75 ± 4.77)
(t(8) = 3.23, p < 0.01). For EE-only animals, we iden-
tified the following values: EE6M-HD and EE6M-HD/
SD (45.91 ± 8.53) (t(8) = 3.40, p < 0.009); EE6M-HD/SD
and EE6M-HD/SD/HD (70.66 ± 3.19) (t(8) = 2.72, p <
0.03); EE18M-HD (73.03 ± 8.22) and EE18M-HD/SD
(44.35 ± 5.70) (t(8) = 2.87, p < 0.02); and EE18M-HD/SD
and EE18M-HD/SD/HD (t(8) = 4.76, p < 0.001).

Swim speed and distance travelled
Because a reduction in escape latency during training
might simply suggest that mice learned to swim faster
across days and or abandoned the thigmotactic strategy
that is preferred during the very first days of training, in
Figure 2 we show total distance travelled (path length)
(Figure 2A) and respective mean trajectories (Figure 2B);
distance travelled on the quadrant opposite the platform
(Figure 2C); and the average swim speed (Figure 2D).
Three-way ANOVA of these data revealed that distance
travelled was influenced by age (F(1,48) = 13.6, p < 0.0006)
and diet (F(2,48) = 7.55, p < 0.001) with significant inter-
action between environment and age (F(1,48) = 7.40, p <
0.009). As expected, the best performances in learning
rates were associated with shorter distances travelled. In-
deed, pairwise comparisons showed that IE6M-HD/SD
(241.36 ± 23.77 cm, mean ± S.E.) travelled longer dis-
tances than IE6M-HD (116.23 ± 16.07) (t(8) = 4.36, p <
0.002) and IE6M-HD/SD/HD (98.03 ± 19.55) (t(8) = 4.66,
p < 0.002), but shorter than IE18M-HD/SD (467.93 ±



Figure 1 Learning rate on water maze test under different diet regimes, ages, and environments. Graphic representation of diet regime,
age, and environmental influences on learning rate of the best five performances of each experimental group on the fourth training day. In the
top panel (A), indicated in different colours, are the mean values and standard errors of the learning rates with respective significance values, and
in the bottom panel (B) are the individual performances (coloured, solid circles) and mean groups (dark dashes between solid circles).
(*) indicates significant differences in learning rates between different diet regimes, (#) significant differences in learning rates between
environments, and coloured line connectors differences in learning rates between age.
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79.75) (t(8) = 2.72, p < 0.026) and IE18M-HD/SD/HD
(281.14 ± 63.03) (t(8) = 2.78, p < 0.02). Consistent with
learning rate results, IE6M-HD also travelled shorter dis-
tances than EE6M-HD (179.87 ± 21.43) (t(8) = 2.38, p <
0.045). In addition, EE18M-HD/SD (360.23 ±13.21) swam
longer distances to find the platform than EE18M-HD
(183.82 ± 52.02) (t(8) = 3.29, p < 0.01) or EE18M-HD/SD/
HD (207.83 ± 26.32) (t(8) = 5.18, p < 0.0008).
In keeping with these findings, the distance travelled

in the opposite quadrant to the platform was also
influenced by age (F(1,48) = 10.9, p < 0.0019) and diet
(F(2,48) = 4.83, p < 0.01), but no interactions were identi-
fied. Pairwise analysis demonstrated that IE6M-HD
(19.69 ± 6.54, mean ± S.E.) swam less in the opposite
quadrant than IE6M-HD/SD (71.67 ± 19.30) (t(8) = 2.55,
p < 0.03) and IE18M-HD (101.45 ± 34.03) (t(8) = 2.36,
p < 0.046). In addition, EE18M-HD/SD (109.78 ± 14.11)
swam longer distances in the opposite quadrant than
EE18M-HD (51.69 ± 14.62) (t(8) = 2.86, p < 0.02) and
EE18M-HD/SD/HD (66.19 ± 13.03) (t(8) = 2.27, p <
0.05).
Finally, three-way ANOVA indicated that swim speed
was affected by age (F(1,48) = 9.08, p < 0.004) and diet
(F(2,48) = 9.26, p < 0.0004) with significant interaction
between environment and age (F(1,48) = 5.51, p < 0.023).
However, pairwise comparisons showed that IE6M-HD/SD
(9.67 ± 0.63 cm/s, mean ± S.E.) swam faster than IE6M-
HD (7.35 ± 0.78) (t(8) = 2.31, p < 0.05) and IE6M-HD/SD/
HD (6.39 ± 0.75) (t(8) = 3.33, p < 0.01) but slower than
IE18M-HD/SD (13.09 ± 1.13) (t(8) = 2.63, p < 0.03). In
addition, IE6M-HD/SD/HD swam slower than IE18M-
HD/SD/HD (9.05 ± 0.83) (t(8) = 2.39, p < 0.04), and
IE18M-HD/SD swam faster than IE18M-HD/SD/HD
(t(8) = 2.87, p < 0.021). However, swim speed did not
change in animals raised in enriched conditions with a
single exception: EE18M-HD (7.36 ± 0.79) swam slower
than EE18M-HD/SD (10.77 ± 0.78) (t(8) = 3.07, p < 0.02).
Taking these results together, learning rates seem to be

directly related to distance travelled, but swim speed
values do not, suggesting that the behavioural effects are
not the result of sensorimotor changes and that mastica-
tory activity seems to affect spatial learning in the



Figure 2 Total and opposite quadrant travelled distances, representative swimming trajectories, and swimming speed. In the top
panels, indicated in different colours, are the mean values and standard errors of the total distances (A) and representative swimming trajectories
of each group of animals closer to the mean distance group (B). In the bottom panels are the mean values of opposite quadrant distances (C)
and swimming speeds (D). All data plots are expressed as a function of age, environment, and diet regimes. As expected, HD/SD groups,
independent of age or environment, swam longer distances both in total and in the opposite quadrant than all other groups. (*) indicates
significant differences between different diet regimes, (#) significant differences between environments, and coloured line connectors differences
between ages, and the edges of the black line link differences between diet.
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Morris water maze test. The findings also indicate that a
combination of increased masticatory activity and EE in
animals with a previous reduction in masticatory activity
may benefit both young and aged mice.
Body weight and diet regimes
To detect a possible influence of diet regimes and envir-
onment on body weight, we weighed all animals after
behavioural tests. One-way ANOVA revealed significant
influence of diet regimes on body weight of IE animals
(F(2, 12) = 16.04, p < 0.0006), and IE6M-HD/SD (52.84 ±
2.45 g, mean ± S.E.) weighed significantly less than IE6M-
HD (75.96 ± 3.69) or IE6M-HD/SD/HD (71.56 ± 2.93)
mice (Bonferroni post-tests, p < 0.05). No body weight dif-
ferences were detected in EE animals. We did find a single
significant inverse correlation between body weights and
performance in the water maze in IE6M-HD/SD mice
(Pearson’s coefficient = −0.99; R2 = 0.99, p = 0.0007).
In addition, t-tests revealed no significant differences be-

tween body weights of IE6M-HD/SD and EE6M-HD/SD
mice (two-tailed t-test, p = 0.38) and no differences in
learning rates. Based on this finding, we speculated that
the sedentary IE lifestyle is associated with being over-
weight and that the HD/SD diet regime in IE may reduce
food intake. Observing the active lifestyle of EE animals
(EE6M-HD vs IE6M-HD, two-tailed t-test, p =0.0002;
EE6M-HD/SD/HD vs IE6M-HD/SD/HD, two-tailed t-test,
p = 0.0049), we noted that it reduced weight gain inde-
pendent of the diet regime. However, these differences
disappeared after 18M in all diet regimes.
Discussion
In the present report, we tested the hypothesis that a
combination of masticatory rehabilitation and EE would
recover impaired spatial learning induced by a combin-
ation of IE and reduced masticatory activity. To mimic
sedentary or active lifestyles, respectively, we raised mice
from weaning onwards in either IE or EE. To mimic a
reduction in masticatory activity, we fed a soft diet to
mice previously fed with a hard diet (HD/SD) and com-
pared water maze performances of this group with two
other groups fed with continuous hard diet (HD – con-
trol group) or with a sequence of hard, soft, and hard
diets (HD/SD/HD – rehabilitated group). We found that
a reduction in masticatory activity and IE impaired
spatial learning on the Morris water maze and a combin-
ation of masticatory rehabilitation and EE recovered
spatial learning abilities of both adult and aged mice.
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Aging cognitive decline and environment
We tested adult and aged mice raised in IE or EE for
spatial memory and learning using the water maze para-
digm. The results revealed that all IE and EE adult mice
could learn and remember the position of the hidden
platform after four training days; however, only aged EE
mice met the criterion of 60% or more in learning rate
(EE18M-HD = 73.03 ± 8.22). Indeed, the aged IE mice
learning rate was on average near the chance level
(IE18M-HD = 51.02 ± 7.26). These findings suggest that
after 6 months of impoverished conditions, the hippo-
campal requirements for spatial learning were spared in
young mice and could be activated after training. As
expected, memory capabilities became worse when ad-
vanced age was combined with IE; under these conditions,
age-related spatial learning decline was aggravated. In
contrast, EE-raised aged mice exhibited relatively unim-
paired spatial learning in water maze tests, suggesting that
the consolidation and retrieval mechanisms for these
memories were spared under enriched conditions. These
observations replicate previous results of ours and others
in mice and rats undergoing spatial learning and memory
tests [7,22-29].
More recently, we investigated the impact of institu-

tionalization on aged humans, living sedentarily under
poor conditions of cognitive and motor–sensory stimu-
lation (impoverished-like conditions). Participants un-
derwent neuropsychological tests, and outcomes were
compared to those of an aged control group living in the
community with their families (enriched-like conditions).
Our findings revealed significantly higher scores among
community-living participants. Consistent with this
finding, institutionalized patients after 6 months of
motor–sensory and cognitive stimulation (enriched-like
environment) experienced significant improvement in
their performances on neuropsychological tests [30].

Rehabilitation of masticatory function to prevent adult
and aging-related spatial learning losses
A number of studies using a variety of behavioural as-
says, including the Morris water maze [18,19,31-36],
passive avoidance [37], and radial arm maze [20,38,39],
indicate that long-term soft-diet feeding or extraction of
molar teeth results in learning and memory deficits [40].
Recent studies with the Morris water maze demon-
strated that mice fed a hard diet required significantly
less time to reach the platform than experimental mice
and spent significantly more time in the former platform
area, suggesting that hard-diet feeding is associated with
improved spatial memory [41]. In addition, one-year-old
[35] or 18-month-old [36] adult mice fed with a soft diet,
compared to a solid-diet group, showed lower spatial per-
formances on the Morris water maze. Similarly, SAMR1
and SAMP8 mice fed a solid diet performed better in the
eight-arm radial maze than mice fed a powdered diet [39].
SAMP8 mice reach adult maturity at 6 months of age
when learning and memory deficits become apparent in a
variety of behavioural tests [42-45] and when reduced
masticatory activity accelerates age-related learning and
memory decline [40]. Occlusal disharmony also aggravates
age-dependent deficits in spatial learning in the Morris
water maze [17,46-49]; see [13,40] for recent reviews.
Moreover, monkey studies demonstrate that when occlu-
sal disharmony is removed, the associated stressful re-
sponse disappears [50].
Here the results add a new piece of information, dem-

onstrating a vigorous effect of diet changes on spatial
learning in the Morris water maze after a reduction in
masticatory activity imposed with a soft diet on mice
previously fed a hard diet. We also demonstrated that
these spatial learning losses can be promptly recovered
by masticatory rehabilitation at adulthood (6M) but that
aged mice (18M) require a combination of environmental
stimuli and masticatory rehabilitation to obtain similar
effects. Because the Morris water maze is a hippocampal-
dependent task, we suggest that rehabilitation of mastica-
tory activity in adult mice and a combination of EE and
masticatory rehabilitation in aged mice may rescue hippo-
campal function.
We emphasize that the animals were deprived of their

masticatory activity but not fully suppressed in an effort
to simulate the human condition. Taking all of the re-
sults together, we can speculate that oral rehabilitation
and sensory–motor and cognitive stimulation may help
protect human subjects from age-related cognitive de-
cline and that these interventions would be more effect-
ive if implemented as early as possible.
Conclusions
An imposed reduction in masticatory activity by admin-
istration of a soft diet to sedentary mice previously fed a
hard diet impaired spatial learning in the Morris water
maze. The rehabilitation of masticatory activity of these
deprived mice at adulthood, independent of environment,
recovered spatial learning losses, and a combination of
enriched environment and rehabilitation benefited signifi-
cantly both young and aged mice. We are now investigat-
ing the cellular and molecular changes associated with
spatial learning recovery after masticatory rehabilitation.
Methods
All animals, female albino Swiss mice, were maintained
in accordance with the guidelines published by the Na-
tional Institutes of Health (Guide for the Care and Use
of Laboratory Animals). The experimental protocol was
tested and approved prior to study initiation by the Eth-
ics Committee on Experimental Animal Research (from
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the Institute of Biological Sciences, Federal University of
Pará, Brazil, CEPAE-UFPA:BIO004-09).
Environment, age, diet regimes, and experimental groups
The EE consisted of two-level wire cages (100×50×100
cm) equipped with ropes, rod bridges, tunnels, running
wheels, and toys. Toys were made of different forms of
plastic, wood, and metal of different colours and were
changed periodically. Each EE cage housed 20 young and
aged mice. Water and food were delivered to the top and
bottom levels, respectively. This arrangement obliged
mice to move from one compartment to another to drink
and eat. Impoverished conditions comprised plastic cages
(32×45×16.5 cm) without equipment or toys and covered
by metal grids. The IE mice were maintained in groups of
six until sacrifice. Each IE cage housed 9 young or aged
mice. Animals had free access to food and water and were
raised at a controlled room temperature (23 ± 1°C) and
12-hour light–dark cycle. Figure 3 depicts the experimen-
tal timeline.
Figure 3 Experimental timeline. Female albino Swiss mice were housed
from postnatal days 21 until 180 (6 months old; 6M) or 540 (18 months old
correspond to continuous pellet diets; HD/SD regimes for 6 or 18 months
respectively; HD/SD/HD regimes for 6 or 18 months correspond to sequen
respectively. All 6M and 18M animals were submitted to the Morris water m
555 postnatal days, respectively. Bottom panel: pellet (hard diet) and powd
from left to right.
All animals from IE or EE cages were organized into
six groups according to diet regime (HD, HD/SD, or
HD/SD/HD) and age (6 or 18 months). Animals were
housed either in enriched or impoverished environments
from postnatal day 21 onwards, under one of the following
diet regimes: IE6M (HD, n = 28; HD/SD, n = 15; HD/SD/
HD, n = 18), EE6M (HD, n = 27; HD/SD, n = 11; HD/SD/
HD, n = 11), IE18M (HD, n = 19; HD/SD, n = 11; HD/SD/
HD, n = 12), and EE18M (HD, n = 18; HD/SD, n = 25;
HD/SD/HD, n = 27). HD groups were fed a continuous
pellet diet; HD/SD regimes for 6 or 18 months followed an
alternating pellet and powder diet every 3 or 9 months, re-
spectively; and HD/SD/HD regimes for 6 or 18 months
followed sequences of pellet, powder, and pellet food every
2 or 6 months, respectively (Figure 3). All animals were al-
bino Swiss female mice.

Behavioural tests
At corresponding time points (6 or 18 months), all
groups were trained in the water maze paradigm [9],
adapted for mouse dimensions. The circular pool and
either in impoverished or enriched environments (middle panel left)
; 18M), under one of the following diet regimes: HD groups
correspond to alternating pellet and powder diet every 3 or 9 months,
ces of pellet, powder, and pellet food every 2 or 6 months,
aze (middle panel, right) between 180 and 195 and between 540 and
er (soft diet) food. Time is represented in days after birth and increases
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platform were 101 and 13 cm in diameter, respectively;
the platform was 1 cm below the water surface. To oc-
clude the platform, the pool was filled with black water
(22 ± 2°C) coloured with a non-toxic dye. The first day
of water maze training was dedicated to adapting the
animal to the aquatic labyrinth. In the remaining 5 days,
animals were tested once per day in three trials. Three
permanent external cues were used during all day tests,
and luminance level in the pool was kept constant be-
tween 4–5 cd/m2. The enter points in the pool, based on
dividing this apparatus according to cardinal points and
thus into four equal quadrants, were semi-randomized,
and we systematically avoided repeating entry at the
same point more than twice. In each trial, the animals
were allowed three trials of 60 s each to find the hidden
platform; trials were separated by intervals of 30 s, and
the task was considered complete when they found and
remained on the platform for 10 s.
Any-Maze® tracking software was systematically used

to precisely record the position of the mouse throughout
the test. From this detailed positional information, we
estimated for each animal a daily average value of escape
latencies, travelled distances (path length), average swim
speed, and time spent in the quadrant opposite to the
hidden platform. The learning rate for the water maze
was assessed by the ratio between escape latencies to
find the platform on the first and subsequent test days
(days 2–5) using the following equation: C = (L1-LN)/
(L1+LN), where C is a contrast index to express the
learning rate and L1 and LN are the escape latencies to
find the platform on the first and the subsequent test
days, respectively. This equation was systematically ap-
plied every training day using the escape latency mean
value of the daily three trials of each animal. Thus, four
values of contrasts were obtained for each animal (L1/L2,
L1/L3, L1/L4, and L1/L5), and a learning rate curve for
five training days could be plotted for each animal. To
express the learning rate in percentage values for each
day, we selected from all experimental groups, independ-
ent of the diet regimen, age, or environment, the higher
contrast value for each day and estimated the remaining
contrast values as follows: C (%) = [(L1-LN)/(L1+LN)] *
100 / Cmax, where Cmax corresponds to the best per-
formance on that day in comparison with the first day
and L1 and LN correspond to the escape latency in the
first and subsequent days, respectively. Because the
fourth training day showed the highest number of ani-
mals with a learning rate equal to or above 60% in all ex-
perimental groups, we selected this training day for
comparative analysis between groups. To this end, we
chose the five best performances of each experimental
group from that day, considering that these five best
specimens showed consistent learning (C (%) > 0, at the
fourth training day and on at least two more test days,
or C (%) > 0, at training days 4 and 5) and applied three-
way ANOVA, followed by Tukey post-tests, with differ-
ences between groups accepted as significant at a 95%
confidence level (p < 0.05). The contrast index has been
previously applied to water maze results [51,52] to
normalize the learning curve to each individual’s per-
formance, thus accounting for the variation in perfor-
mances among individuals.
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